Phase-field Models for Transition Phenomena in Materials with Hysteresis

Claudio Giorgi

DICATAM, Università di Brescia

Spring School on Rate-independent evolutions and hysteresis modelling

Milan, May 27-31 2013
Many real-world phenomena exhibit hysteresis:

- elasto-plastic solids,
- shape memory alloys,
- ferromagnetic materials,
- ferroelectric materials,
- Schmitt triggers (circuits)
- cell division (biology),
- activation in lymphoid cells (immunology)
- export performance (economics)
-

Many mathematical models for hysteresis have been proposed, most of which are devoted to ferromagnetic bodies:

- Preisach (1935),
- Bouc-Wen (1971-76),
- Jiles-Atherton (1984),
- Coleman-Hodgdon (1986),
-
Many real-world phenomena exhibit hysteresis:
- elasto-plastic solids,
- shape memory alloys,
- ferromagnetic materials,
- ferroelectric materials,
- Schmitt triggers (circuits)
- cell division (biology),
- activation in lymphoid cells (immunology)
- export performance (economics)
- ..

Many mathematical models for hysteresis have been proposed, most of which are devoted to ferromagnetic bodies:
- Preisach (1935),
- Bouc-Wen (1971-76),
- Jiles-Atherton (1984),
- Coleman-Hodgdon (1986),
-
The most part of mathematical models for hysteresis phenomena are **ISOTHERMAL**.

THE FOCUS of this mini-course is on:

- **non-isothermal** hysteresis modeling compatible with thermodynamics;
- the **relation** between hysteresis and phase-transition, when the temperature θ is varying.

In particular, we stress the **DIFFERENCE** between

- **hysteretic phase-transitions**, typical in **first order** models (for instance, when melting temperature and freezing temperature do not agree);
- **structural hysteresis**, typical in **second order** models, when the transition occurs between a non-hysteretic and an hysteretic regime (or phase) at a given temperature (for instance, when paramagnetic material becomes ferromagnetic below the Curie temperature).
Introduction

The most part of mathematical models for hysteresis phenomena are ISOTHERMAL.

THE FOCUS of this mini-course is on:

- **non-isothermal** hysteresis modeling compatible with thermodynamics;
- the **relation** between **hysteresis and phase-transition**, when the temperature θ is varying.

In particular, we stress the DIFFERENCE between

- **hysteretic phase-transitions**, typical in **first order** models (for instance, when melting temperature and freezing temperature do not agree);
- **structural hysteresis**, typical in **second order** models, when the transition occurs between a non-hysteretic and an hysteretic regime (or phase) at a given temperature (for instance, when paramagnetic material becomes ferromagnetic below the Curie temperature).
The most part of mathematical models for hysteresis phenomena are **ISOTHERMAL**.

THE FOCUS of this mini-course is on:

- **non-isothermal** hysteresis modeling compatible with thermodynamics;
- the **relation** between hysteresis and phase-transition, when the temperature θ is varying.

In particular, we stress the **DIFFERENCE** between

- **hysteretic phase-transitions**, typical in **first order** models (for instance, when melting temperature and freezing temperature do not agree);
- **structural hysteresis**, typical in **second order** models, when the transition occurs between a non-hysteretic and an hysteretic regime (or phase) at a given temperature (for instance, when paramagnetic material becomes ferromagnetic below the Curie temperature).
The most part of mathematical models for hysteresis phenomena are ISOTHERMAL.

THE FOCUS of this mini-course is on:
- non-isothermal hysteresis modeling compatible with thermodynamics;
- the relation between hysteresis and phase-transition, when the temperature θ is varying.

In particular, we stress the DIFFERENCE between
- hysteretic phase-transitions, typical in first order models (for instance, when melting temperature and freezing temperature do not agree);
- structural hysteresis, typical in second order models, when the transition occurs between a non-hysteretic and an hysteretic regime (or phase) at a given temperature (for instance, when paramagnetic material becomes ferromagnetic below the Curie temperature).
Introduction

Recently, some efforts have been made to apply the phase-field machinery and the Ginzburg-Landau theory to model phase transitions with hysteresis:

Recently, some efforts have been made to apply the phase-field machinery and the Ginzburg-Landau theory to model phase transitions with hysteresis:

Recently, some efforts have been made to apply the phase-field machinery and the Ginzburg-Landau theory to model phase transitions with hysteresis:

In this framework we discuss two simple one-dimensional models:

1. **in Shape Memory Alloys**: A phase-field model (first order) which describes both temperature-induced and stress-induced phase transitions from austenitic to (oriented) martensitic phases (*pseudo-elastic regime*).

2. **in Ferromagnetics**: A phase-field model (second order) which describes both temperature-induced and H-induced phase transitions from paramagnetic (non-hysteretic) to ferromagnetic (hysteretic) regimes.

Finally, we suggest to apply the latter to describe the transition from pseudo-elastic to elasto-plastic regimes in Shape Memory Alloys. In addition to the former, this will produce a complete SMA model, that is a model which works at all temperatures.
In this framework we discuss two simple one-dimensional models:

1. **in Shape Memory Alloys**: A phase-field model (first order) which describes both temperature-induced and stress-induced phase transitions from austenitic to (oriented) martensitic phases (*pseudo-elastic regime*).

2. **in Ferromagnetics**: A phase-field model (second order) which describes both temperature-induced and H-induced phase transitions from paramagnetic (non-hysteretic) to ferromagnetic (hysteretic) regimes.

Finally, we suggest to apply the latter to describe the transition from pseudo-elastic to elasto-plastic regimes in Shape Memory Alloys. In addition to the former, this will produce a complete SMA model, that is a model which works at all temperatures.
In this framework we discuss two simple one-dimensional models:

1. **in Shape Memory Alloys**: A phase-field model (first order) which describes both temperature-induced and stress-induced phase transitions from austenitic to (oriented) martensitic phases (*pseudo-elastic regime*).

2. **in Ferromagnetics**: A phase-field model (second order) which describes both temperature-induced and H-induced phase transitions from paramagnetic (non-hysteretic) to ferromagnetic (hysteretic) regimes.

Finally, we suggest to apply the latter to describe the transition from *pseudo-elastic* to *elasto-plastic* regimes in Shape Memory Alloys. In addition to the former, this will produce a complete SMA model, that is a model which **works at all temperatures**.
First order transitions without hysteresis.

Figure: The water P–T diagram
First order transitions without hysteresis.

Figure: Liquid-vapor transitions without hysteresis at constant temperature θ^* (red) and at constant pressure p^* (blue).
Phase-field models for 1st order transitions

- Pressure-induced liquid/vapor transition at constant temperature \(\theta^* \).

Figure: The isothermal Amagat-Andrews diagram
Phase-field models for 1st order transitions

\[P_{eq} = p^* \]

Figure: Maxwell construction of the Amagat-Andrews diagram
Temperature-induced liquid/vapor transition at constant pressure p^*.

Figure: Isobaric diagram in the energy-temperature plane
Phase-field models for 1st order transitions without hysteresis.
LIQUID – VAPOR
Phase variable: $\varphi = 0$ vapor, $\varphi = 1$ liquid
for instance: $\varphi = c_\ell$ (liquid concentration) or $\varphi = \gamma(c_\ell)$
Ginzburg-Landau equation:

$$\rho \dot{\varphi} = -\kappa \delta \varphi \psi$$

$$\delta \varphi \psi = \rho \partial \varphi \hat{\psi} - \nabla \cdot (\rho \partial \nabla \varphi \hat{\psi})$$

Thermodynamic potential: Gibbs free energy ψ
for instance:

$$\psi(p, \theta, \varphi, |\nabla \varphi|) =$$

$$c_p \theta (1 - \ln \theta) + k \theta \left[\ln \frac{p}{k} - 1 \right] + \lambda(\theta)g(\varphi)[u(p, \theta) - g(\varphi)] + \frac{1}{2} \nu |\nabla \varphi|^2$$

where $c_p, k, \lambda, \nu > 0 \ g = \gamma^{-1}$ and $u(p, \theta) \approx \frac{p}{p^*} - \beta(\theta/\theta^* - 1)$

Berti A., –, Morro, Mathematical modeling of phase transition and separation in fluids, DCDS-B (to appear)
Phase-field models for 1st order transitions

\[\psi \]
\[\theta < \theta^* \quad a) \]
\[\theta = \theta^* \quad b) \]
\[\theta > \theta^* \quad c) \]

Figure: **Isobaric** \((p = p^*\), above) and **isothermal** \((\theta = \theta^*\), below) free energy minima: in red the stable states.

\[\psi \]
\[p > p^* \quad a) \]
\[p = p^* \quad b) \]
\[p < p^* \quad c) \]
Phase-field models for 1st order transitions

- $u(p, \theta) > 1 \rightarrow \text{liquid}$ is stable,
- $u(p, \theta) < 1 \rightarrow \text{vapor}$ is stable,
- $u(p, \theta) = 1 \rightarrow \text{vapor-pressure curve (red)}$
Phase-field models for 1st order transitions with hysteresis.

AUSTENITE – MARTENSITE

Phase variable: \(\varphi = 0 \) austenite, \(\varphi = 1 \) martensite \(M^+ \)
\(\varphi = -1 \) martensite \(M^- \)

for instance: \(\varphi = \varepsilon_p/\varepsilon_t \) (normalized plastic strain) or
\(\varphi = \gamma(\varepsilon_p/\varepsilon_t) \) that is \(\varepsilon_p = \varepsilon_t g(\varphi) \), \(g = \gamma^{-1} \)

Ginzburg-Landau equation:

\[
\rho \dot{\varphi} = -\kappa \delta_{\varphi} \psi \\
\delta_{\varphi} \psi = \rho \partial_{\varphi} \psi - \nabla \cdot (\rho \partial_{\nabla \varphi} \hat{\psi})
\]

WARNING 1: the G-L equation is NOT rate-independent

Thermodynamic potential: Gibbs free energy \(\psi = \Psi + \frac{1}{2} |\nabla \varphi|^2 \)

WARNING 2: there are infinitely many (sub)potentials \(\Psi \)
1. The Gibbs free energy construction

Duhem’s rate-independent models are considered as starting point of the Gibbs free energy construction:

\[
\frac{d\sigma}{d\varepsilon} = \mathcal{F}(\sigma, \varepsilon, \text{sgn} \dot{\varepsilon}), \quad \text{sgn} \, P = \begin{cases}
+1 & \text{if } P > 0, \\
0 & \text{if } P = 0, \\
-1 & \text{if } P < 0.
\end{cases}
\]

\(\sigma\) - stress, \(\varepsilon\) - total strain.

The role of skeleton curve description is emphasized.

The minimum (Gibbs) free energy representation \(\Psi_m\) is obtained by computing the maximum recoverable work.

\(\Psi_m\) is uniquely determined by the skeleton curve.
2 – The SMA bilinear model

\[
\frac{d\sigma}{d\varepsilon} = \begin{cases}
\alpha & \text{if } (\varepsilon, \sigma) \in \Sigma_1 \cup \Sigma_2 \text{ or } (\varepsilon, \sigma) \in \Xi_1 \text{ and } \text{sgn} \dot{\varepsilon} = 1 \text{ or } (\varepsilon, \sigma) \in \Xi_2 \text{ and } \text{sgn} \dot{\varepsilon} = -1 \\
0 & \text{otherwise},
\end{cases}
\]

where \(y = y(\theta) \) and

\[
\Sigma_1 = \left\{ (\varepsilon, \sigma) : \sigma = \alpha \varepsilon, \ 0 \leq \varepsilon < \frac{y}{\alpha} \right\}
\]

\[
\Sigma_2 = \left\{ (\varepsilon, \sigma) : \sigma = \alpha \varepsilon - \frac{\alpha + \kappa}{\kappa} h, \ \varepsilon > \frac{y}{\alpha} + \frac{h}{\kappa} \right\}
\]

\[
\Xi_1 = \left\{ (\varepsilon, \sigma) : y - h \leq \sigma < y, \frac{\sigma}{\alpha} < \varepsilon < -\frac{\sigma}{\kappa} + \frac{\alpha + \kappa}{\alpha \kappa} y \right\} \cup \left(\frac{y}{\alpha} + \frac{h}{\kappa}, y - h \right)
\]

\[
\Xi_2 = \left\{ (\varepsilon, \sigma) : y - h < \sigma \leq y, -\frac{\sigma}{\kappa} + \frac{\alpha + \kappa}{\alpha \kappa} y < \varepsilon < \frac{\sigma}{\alpha} + \frac{\alpha + \kappa}{\alpha \kappa} h \right\} \cup \left(\frac{y}{\alpha}, y \right)
\]
3 – The graph of the bilinear model

\[\varepsilon = \varepsilon_e + \varepsilon_p = \frac{1}{\alpha} \sigma + \varepsilon_t g(\varphi) \]

\(\varepsilon_p = 0 \) in the pure austenite phase \(\varphi = 0 \),
\(\varepsilon_p = \pm \varepsilon_t \) in the pure martensite phases \(\varphi = \pm 1 \).

Figure: Major and minor hysteresis loops (in red the skeleton curve).
First order transitions with hysteresis at constant stress

Figure: The \((\theta, \sigma) \)-diagram: temperature-induced transitions.
First order transitions with hysteresis at constant stress

1 – Temperature-induced austenite/martensite transition

Shape memory alloys (pseudo-elastic regime: $\theta > \theta_A$)

Figure: The $A \rightarrow M^+$ (\circ) and $M^+ \rightarrow A$ (\Box) temperature-induced transitions at $\sigma = \sigma^* > 0$.
Phase-field models for 1st order transitions

First order isothermal transitions with hysteresis: $\theta = \theta^*$

Figure: The (θ, σ)-diagram: stress-induced transitions.

 pseudo-elastic
Phase-field models for 1st order transitions

First order isothermal transitions with hysteresis

1 – Stress-induced austenite/martensite transition

Bilinear model (pseudo-elastic regime: $\theta = \theta^* > \theta^*_A$)

Figure: Stable (solid) and unstable (dashed) equilibrium branches.
Phase-field models for 1st order transitions

First order isothermal transitions with hysteresis
2 – Stress-induced austenite/martensite transition

Devonshire model (pseudo-elastic regime: $\theta = \theta^* > \theta^*_A$)

\[\sigma = y(\theta) - h - y(\theta) + h \]

Figure: Stable (solid) and unstable (dashed) equilibrium branches.
Construction of the minimum free energy in the bilinear case

Figure: Work recovered to reach the origin starting from ξ_2.

C. Giorgi HYSTRI, Milan, may 27-31 2013 Phase-field Models in Materials with Hysteresis
Isothermal 1st order transitions with hysteresis

Construction of the minimum free energy in the bilinear case

\[\sigma > 0 \]

\[\psi(\varphi, \sigma, \theta, \nabla \varphi) = \psi(\varphi, \sigma, \theta) + \frac{1}{2} \nu |\nabla \varphi|^2 \]

\[\psi_m(\varepsilon_p, \sigma, \theta^*) = -\frac{1}{2\alpha} \sigma^2 + [y(\theta^*) - \sigma] \varepsilon_p - \frac{h}{2\varepsilon_t} \varepsilon_p^2. \]

After replacing \[\varepsilon_p = \varepsilon_t g(\varphi) \]

we have

\[\psi_m(\varphi, \sigma, \theta^*) = -\frac{1}{2\alpha} \sigma^2 + [y(\theta^*) - \sigma] \varepsilon_t g(\varphi) - \frac{h}{2\varepsilon_t} g^2(\varphi) \]

where \[\theta = \theta^* > \theta^*_A \]

is a fixed temperature and

\[g(0) = 0, \quad g(1) = 1, \quad g'(\varphi) \geq 0 \]

For instance, \[g(\varphi) = \varphi^2(3 - 2\varphi) \] so that \(\psi \) turns out to be a polynomial of the sixth order.
Isothermal 1st order transitions with hysteresis

Different choices of g:

\[g_1(\varphi) = \varphi^2(3 - 2\varphi), \quad g_2 = \varphi^2(2 - \varphi^2), \quad g_3 = \frac{1}{2}(1 - \cos \pi \varphi) \]

Figure: The graphs of g_1 (dashed), g_2 (blue) and g_3 (red) on $(0, 1)$.
The minimum free energy

Usually, Ψ is a sixth-order (at least) polynomial: $g = g_1(\varphi)$. Why? Ψ has to exhibit 3 minima and 2 maxima when $y - h < \sigma < y$.

![Graph showing the minimum free energy with critical points and regions](image)
The Ginzburg-Landau equation

\[\dot{\varphi} = -\kappa \left[\partial_\varphi \Psi_m(\varphi, \sigma) - \nu \Delta \varphi \right] \]
\[= -\kappa \varepsilon_t \left[y(\theta) - |\sigma| - hg(\varphi) \right] g'(\varphi) + \kappa \nu \Delta \varphi, \]

Since \(\dot{\varepsilon} = \dot{\varepsilon}_p + \dot{\varepsilon}_e = \varepsilon_t g'(\varphi) \dot{\varphi} + \frac{1}{\alpha} \dot{\sigma}, \)
it follows (neglecting diffusion \(\nu = 0) \)

\[\dot{\varepsilon} = -\kappa \varepsilon_t^2 \left[y(\theta) - |\sigma| - hg(\varphi) \right] [g'(\varphi)]^2 + \frac{1}{\alpha} \dot{\sigma} \]

Rate-type (not rate-independent) constitutive equation.

\[\dot{\sigma} = \alpha \dot{\varepsilon} + \kappa \alpha \varepsilon_t^2 \left[y(\theta) - |\sigma| - hg(\varphi) \right] [g'(\varphi)]^2. \]

Cycle simulation (isothermal: $y = y(\theta^*)$)

Assuming that $\sigma(t) = A \sin \omega t$ we obtain the system

$$
\begin{align*}
\dot{\varepsilon} &= -\kappa \varepsilon_t^2 \left[y - |\sigma| - h g(\varphi) \right] \left[g'(\varphi) \right]^2 + \frac{1}{\alpha} A \omega \cos \omega t \\
\dot{\sigma} &= A \omega \cos \omega t.
\end{align*}
$$

Choosing $g(\varphi) = \frac{1}{2}(1 - \cos \pi \varphi)$ and taking into account that

$$g(\varphi) = (\alpha \varepsilon - \sigma)/\alpha \varepsilon_t, \quad \left[g'(\varphi) \right]^2 = \pi^2 g(\varphi)[1 - g(\varphi)]$$

we get

$$\left[g'(\varphi) \right]^2 = \frac{\pi^2}{\alpha^2 \varepsilon_t^2} (\alpha \varepsilon - \sigma) \left[\alpha (\varepsilon_t - \varepsilon) + \sigma \right]$$

and then

$$
\begin{align*}
\dot{\varepsilon} &= -\kappa \pi^2 \left[y - |\sigma| - h \frac{\alpha \varepsilon - \sigma}{\alpha \varepsilon_t} \right] \left(\alpha \varepsilon - \sigma \right) \left[\alpha (\varepsilon_t - \varepsilon) + \sigma \right] + \frac{1}{\alpha} A \omega \cos \omega t \\
\dot{\sigma} &= A \omega \cos \omega t.
\end{align*}
$$
G-L model for 1st order transitions with hysteresis

Cycle simulation (isothermal: $y = y(\theta^*)$)

The major loop is obtained by solving this (closed) system with IC $\varepsilon = \sigma = 0$

Figure: Numerical simulation (solid), theoretical shape (dashed).
G-L model for 1st order transitions with hysteresis

Cycle simulation *(isothermal: \(y = y(\theta^*) \))*

Figure: The minor loop: numerical simulation (solid), theoretical shape (dashed) starting from the origin \(\varepsilon = \sigma = 0 \)
G-L model for 1st order transitions with hysteresis

Cycle simulation (isothermal: $y = y(\theta^*)$)

The major loop with kinematical hardening: $\sigma = \sigma' + \beta \varepsilon$

Figure: Numerical simulation (solid), theoretical shape (dashed) starting from the origin $\varepsilon = \sigma = 0$
Conclusions

- Starting from a (simple) Duhem’s model accounting for hysteresis loops, we construct the corresponding G-L model by way of the computation of Ψ_m (minimum free energy).
- Ψ_m depends on the skeleton curve of the original model, only.
- The original Duhem’s model is able to account for minor loops, the final G-L model is not.
- The original Duhem’s model is rate-independent, the final G-L model is not.
- The final G-L model is almost rate-independent, provided that κ is properly chosen according to the operating frequencies ω.
- The final G-L model may be very easily coupled with PDEs (mass, momentum and energy balances) in order to rule the evolution of all variables; the original Duhem’s model may not.
Second order transitions without hysteresis.

SUPERCONDUCTIVITY

\[\theta \]

\[N \]

\[H \]

\[u(H, \theta) > 1 \]

\[u(H, \theta) < 1 \]

\[\theta_c \]

\[O \]

\[S \]

\[H_0 \]

\[N \]

\[-H_0 \]

Figure: The \((\theta, H)\)-diagram in superconductivity: \(N\) = normal state, \(S\) = superconducting state. \(u(H, \theta) = 1\): the separation curve (blue),
Phase-field models for superconductivity.

Phase variable: \(\phi \in \mathbb{C} \), \(|\phi| = 0 \) normal state,
\(|\phi| = 1 \) superconducting state

\(|\phi|^2 = f_s \) (relative density of superconducting electrons)

Ginzburg-Landau equation (real \(\phi \in [-1, 1] \)):

\[
\Psi' = -\kappa \delta_\phi \Psi \\
\delta_\phi \Psi = \rho \partial_\phi \hat{\psi} - \nabla \cdot (\rho \partial_\nabla \phi \hat{\psi})
\]

Thermodynamic potential: Gibbs free energy \(\psi \)

for instance:

\[
\psi(H, \theta, \phi, |\nabla \phi|) =
\]

\[
c\theta(1 - \ln \theta) + \frac{1}{4} a |\phi|^2 \{ |\phi|^2 + 2[u(H, \theta) - 1] \} + \frac{1}{2} \nu |\nabla \phi|^2.
\]

where \(c, a, \nu > 0 \) and \(u(H, \theta) = H^2 / H_0^2 + \theta / \theta_c \)

Phase-field models for superconductivity

Isomagnetic transitions: \(H = H_* \in [0, H_0) \)

Free energy minima: in red the stable states.

\[
\theta_* = \theta_c \left[1 - \frac{H_*^2}{H_0^2} \right]
\]
Second order transitions with hysteresis.

FERROMAGNETISM

$\mathcal{N} = $ non-hysteretic states, $\mathcal{H} = $ hysteretic states

Figure: The (θ, H)-diagram and the graphs of the skeleton curves when $\theta = \theta_1 > \theta_c$ (at the center) and $\theta = \theta_2 < \theta_c$ (on the right).

Ferromagnetic materials:

Paramagnetic regime: $\theta > \theta_c$

- $H = \text{external (applied) magnetic field}$
- $M = \text{magnetization}$
- $M_s = \text{maximum magnetization (saturation)}$

Figure: The paramagnetic regime: a) bilinear and b) Langevin.

C. Giorgi
HYSTRI, Milan, may 27-31 2013
Phase-field Models in Materials with Hysteresis
Ferromagnetic materials:

1. Ferromagnetic regime: \(\theta < \theta_c \)
 - \(H = \) external (applied) magnetic field
 - \(H_c = \) coercive external magnetic field
 - \(M_r = \) residual magnetization

Figure: The major hysteresis loop: a) bilinear and b) Langevin.
Ferromagnetic materials:

2. **Ferromagnetic regime:** $\theta < \theta_c$
 - $\tilde{H} = H - \alpha M, \, \alpha > 0$ (internal magnetic field)
 - \tilde{H}_c = coercive internal magnetic field

![Diagram](image_url)

Figure: The major hysteresis loop: a) bilinear and b) Langevin.

Hint: \tilde{H}, \tilde{H}_c and M play the role of σ, y and ε_p in SMA.
1. Duhem’s starting models

Bilinear model

\[
\frac{dM}{dH} = \begin{cases}
\chi(\theta) & \text{if } M = f_b(H), \ |M| < M_s, \text{ or } \\
M = f_b(H), \ |M| = M_s \text{ and } M \text{ sgn } \dot{H} < 0, \text{ or } \\
M \neq f_b(H) \text{ and } [f_b(H) - M] \text{ sgn } \dot{H} > 0, \\
0 & \text{otherwise.}
\end{cases}
\]

Figure: Major loop and hysteresis path (arrowhead) in the bilinear model (skeleton curve \(f = f_b \) is red).
1. Duhem’s starting models

Coleman & Hodgdon model (with a Langevin skeleton f_L)

\[
\frac{dM}{dH} = \alpha [f_L(H) - M] \text{sgn} \dot{H} + g(H).
\]

Figure: The Coleman-Hodgdon model (skeleton curve $f = f_L$ in red and fatness $g = g_L$ in blue (dashed).
2. Temperature-induced transitions

\textit{a) The role of the skeleton curve}

- The slope of the skeleton curve at $H = 0$ depends on the temperature:

\[\chi|_{H=0} = \chi_s(\theta) = \frac{\chi_0(\theta)}{1 + \gamma \chi_0(\theta)}, \quad \chi_0(\theta) = \frac{C}{\theta}, \quad \gamma = \alpha - \frac{\theta_c}{C}, \]

- In the limit of high temperatures $\chi_s(\theta) \approx C/(\theta - \theta_c)$ (Curie-Weiss law)
- There is a critical temperature, θ_c, and a critical slope, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- Soft materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma > 0$,
- Hard materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma < 0$,
2. Temperature-induced transitions

a) The role of the skeleton curve

The slope of the skeleton curve at $H = 0$ depends on the temperature:

$$\chi|_{H=0} = \chi_s(\theta) = \frac{\chi_0(\theta)}{1 + \gamma \chi_0(\theta)}, \quad \chi_0(\theta) = \frac{C}{\theta}, \quad \gamma = \alpha - \frac{\theta_c}{C},$$

In the limit of high temperatures $\chi_s(\theta) \approx C / (\theta - \theta_c)$ (Curie-Weiss law)

- There is a critical temperature, θ_c, and a critical slope, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- Soft materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma > 0$,
- Hard materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma < 0$,

C. Giorgi HYSTRI, Milan, may 27-31 2013 Phase-field Models in Materials with Hysteresis
2. Temperature-induced transitions

a) *The role of the skeleton curve*

- The **slope of the skeleton curve** at $H = 0$ depends on the temperature:

$$\chi_{|H=0} = \chi_s(\theta) = \frac{\chi_0(\theta)}{1 + \gamma \chi_0(\theta)}, \quad \chi_0(\theta) = \frac{C}{\theta}, \quad \gamma = \alpha - \frac{\theta_c}{C},$$

- In the limit of high temperatures $\chi_s(\theta) \approx C/\left(\theta - \theta_c\right)$ (*Curie-Weiss law*)
- There is a **critical temperature**, θ_c, and a **critical slope**, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- **Soft materials**: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma > 0$,
- **Hard materials**: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma < 0$,
2. Temperature-induced transitions

a) The role of the skeleton curve

- The slope of the skeleton curve at $H = 0$ depends on the temperature:

$$
\chi|_{H=0} = \chi_s(\theta) = \frac{\chi_0(\theta)}{1 + \gamma \chi_0(\theta)}, \quad \chi_0(\theta) = \frac{C}{\theta}, \quad \gamma = \alpha - \frac{\theta_c}{C},
$$

- In the limit of high temperatures $\chi_s(\theta) \approx C/(\theta - \theta_c)$ (Curie-Weiss law)
- There is a critical temperature, θ_c, and a critical slope, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- Soft materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma > 0$,
- Hard materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma < 0$,

2. Temperature-induced transitions

b) The role of the skeleton curve: the bilinear case

\[\theta > \theta_c \]

\[M \]

\[M_s \]

\[-M_s \]

\[H \]

\[\theta = \theta_c \]

\[M \]

\[M_s \]

\[-M_s \]

\[H \]

\[\theta < \theta_c \]

\[M \]

\[M_s \]

\[-M_s \]

\[H \]

Figure: The bilinear-model transition: the critical slope (in red).
2. Temperature-induced transitions

c) The role of the skeleton curve: the Langevin case

\[\theta \geq \theta_c \]

\[\theta < \theta_c \]

Figure: The Langevin-model transition: the slope \(\chi|_{H=0} \) (dotted red).
2. Temperature-induced transitions

d) The role of the skeleton curve: soft and hard ferromagnetics

\[M_s - M \quad \text{soft} \]
\[M_s - M \quad \text{hard} \]

\[\chi_s \approx \frac{1}{\gamma} > 0 \]
\[\chi_s \approx \frac{1}{\gamma} < 0 \]

Figure: The bilinear-model transition: the skeleton slope when \(\theta \approx 0 \) (in red).

SOFT: small magnetic product \(M_r H_c \) \quad HARD: large magnetic product \(M_r H_c \)
3 - The internal magnetic field

- **Internal magnetic field** \tilde{H} (Brown, 1963):
 \[
 \tilde{H} = H - \mathbf{A} \mathbf{M},
 \]

 \mathbf{A} is a positive-definite tensor which depends on the shape and the anisotropy of the material.

- Projection along a fixed direction (eigenvector of \mathbf{A})
 \[
 \tilde{H} = H - \alpha \mathbf{M}, \quad \alpha > 0
 \]

- Paramagnetic relation (Coey, 2009)
 \[
 M = f(\tilde{H}, \theta) = f(H - \alpha M, \theta), \quad f(0, \cdot) = 0.
 \]

 and
 \[
 \chi(H, \theta) = \partial_{\tilde{H}} f(\tilde{H}, \theta)
 \]
3 - The internal magnetic field

- **Internal magnetic field** \tilde{H} (Brown, 1963):
 \[\tilde{H} = H - A M, \]

 A is a positive-definite tensor which depends on the **shape** and the **anisotropy** of the material.

- Projection along a fixed direction (eigenvector of A)
 \[\tilde{H} = H - \alpha M, \quad \alpha > 0 \]

- **Paramagnetic relation** (Coey, 2009)
 \[M = f(\tilde{H}, \theta) = f(H - \alpha M, \theta), \quad f(0, \cdot) = 0. \]

 and
 \[\chi(H, \theta) = \partial_{\tilde{H}} f(\tilde{H}, \theta) \]
3 - The internal magnetic field

- **Internal magnetic field** \(\tilde{H} \) (Brown, 1963):
 \[
 \tilde{H} = H - AM,
 \]
 \(A \) is a positive-definite tensor which depends on the shape and the anisotropy of the material.

- Projection along a fixed direction (eigenvector of \(A \))
 \[
 \tilde{H} = H - \alpha M, \quad \alpha > 0
 \]

- **Paramagnetic relation** (Coey, 2009)
 \[
 M = f(\tilde{H}, \theta) = f(H - \alpha M, \theta), \quad f(0, \cdot) = 0.
 \]
 and
 \[
 \chi(H, \theta) = \partial_{\tilde{H}} f(\tilde{H}, \theta)
 \]
By reversing the paramagnetic relation we have

\[H = f^{-1}(M, \theta) + \alpha M \]

and then

\[M = \tilde{f}(H, \theta), \quad \tilde{\chi}(H, \theta) = \partial_H \tilde{f}(H, \theta) \]

\[\tilde{\chi}|_{H=0} = \frac{\chi_s(\theta)}{1 - \alpha \chi_s(\theta)}, \quad \alpha = \frac{1}{\chi_s(\theta_c)} \]

- The critical slope \(\tilde{\chi}|_{H=0} \) at \(\theta = \theta_c \) becomes a vertical line.
- In the limit of high temperatures \(\tilde{\chi}(0, \theta) \approx \frac{C}{\theta - \theta_c} \)
 (Curie-Weiss law)
By reversing the paramagnetic relation we have

\[H = f^{-1}(M, \theta) + \alpha M \]

and then

\[M = \tilde{f}(H, \theta), \quad \tilde{\chi}(H, \theta) = \partial_H \tilde{f}(H, \theta) \]

\[\tilde{\chi}|_{H=0} = \frac{\chi_s(\theta)}{1 - \alpha \chi_s(\theta)}, \quad \alpha = \frac{1}{\chi_s(\theta_c)} \]

- The critical slope \(\tilde{\chi}|_{H=0} \) at \(\theta = \theta_c \) becomes a vertical line.

- In the limit of high temperatures \(\tilde{\chi}(0, \theta) \approx C/(\theta - \theta_c) \) (Curie-Weiss law)
By reversing the paramagnetic relation we have

\[H = f^{-1}(M, \theta) + \alpha M \]

and then

\[M = \tilde{f}(H, \theta), \quad \tilde{\chi}(H, \theta) = \partial_H \tilde{f}(H, \theta) \]

\[\tilde{\chi}|_{H=0} = \frac{\chi_s(\theta)}{1 - \alpha \chi_s(\theta)}, \quad \alpha = \frac{1}{\chi_s(\theta_c)}, \]

- The critical slope \(\tilde{\chi}|_{H=0} \) at \(\theta = \theta_c \) becomes a vertical line.
- In the limit of high temperatures \(\tilde{\chi}(0, \theta) \approx C/(\theta - \theta_c) \) (Curie-Weiss law)
Temperature-induced transitions in the $\tilde{H} - M$ plane

The bilinear skeleton curve referred to the internal field at different temperatures.

C. Giorgi HYSTRI, Milan, may 27-31 2013 Phase-field Models in Materials with Hysteresis
Temperature-induced transitions in the $\tilde{H} - M$ plane

The Langevin skeleton curve referred to the internal field.
The Ginzburg-Landau model

The choice of the phase variable:

\[m = \frac{M}{M_s}, \quad |m| \leq 1 \]

from the general theory (Fabrizio,–, Morro, 2009)

\[\dot{m} = -\kappa \delta_m \psi_G = -\kappa [\partial_m \psi_G - \nabla \cdot \partial_{\nabla m} \psi_G], \]

\[\psi_G - \text{Gibbs free energy density (}\rho = 1), \]

\[\psi_G = \psi - \tilde{H}B = V(M, \theta) + \frac{1}{2} \nu |\nabla M|^2 - \frac{1}{2} \mu_0 \tilde{H}^2 - \mu_0 \tilde{H}M, \]

\[(1) \quad \Rightarrow \quad \dot{M} = -\kappa M_s^2 \left[\partial_M V - \mu_0 \tilde{H} - \nabla \cdot (\nu \nabla M) \right]. \]
Assuming uniform fields ($\nabla M = 0$)

$$
\dot{M} = -\hat{\kappa} M_s^2 \left[\partial_M V - \mu_0 \tilde{H} \right] = -\hat{\kappa} \partial_M \Phi, \quad \hat{\kappa} = \kappa M_s^2,
$$

where

$$
\Phi(\tilde{H}, M, \theta) = V(M, \theta) - \mu_0 \tilde{H} M, \quad \text{(Lagrangian density)}.
$$

Problem: how to take the expressions of V and Φ?

- V can be uniquely determined from the skeleton curve:

$$
dV = \mu_0 \tilde{H} dM = \mu_0 f^{-1}(M, \theta) dM
$$

- Φ can be uniquely identified (to within a function of \tilde{H}) as the minimum Gibbs free energy

Remark: $\Phi(0, M, \theta) = V(M, \theta)$
Convex potentials V: $\theta > \theta_c$, $\tilde{H} = 0$

Figure: The graph of $V_b(\cdot, \theta)$ and $V_L(\cdot, \theta)$ when $\theta > \theta_c$.
Non-convex potentials V: $0 < \theta < \theta_c$, $\tilde{H} = 0$

Figure: The graph of $V_b(\cdot, \theta)$ and $V_L(\cdot, \theta)$ when $0 < \theta < \theta_c$.
Convex potentials Φ: $\theta > \theta_c$, $\tilde{H} > 0$

Figure 5.1. The graph of $\Phi_b(\tilde{H}, \cdot, \theta)$ and $\Phi_L(\tilde{H}, \cdot, \theta)$ at $\theta > \theta_c$ when $\tilde{H} = 2\tilde{H}^*$ (solid), $\tilde{H} = \tilde{H}^*/2$ (dashed), $\tilde{H} = 0$ (red dashed).
Non-convex potentials Φ: $\theta < \theta_c$, $\tilde{H} > 0$

Figure 5.2. The graph of $\Phi_b(\tilde{H}, \cdot, \theta)$ and $\Phi_L(\tilde{H}, \cdot, \theta)$ at $\theta < \theta_c$ when $\tilde{H} = 2\tilde{H}^*$ (solid), $\tilde{H} = \tilde{H}^*/2$ (dashed), $\tilde{H} = 0$ (red dashed).
The Langevine case:
temperature-induced transition in the $\tilde{H} - M$ plane

\begin{itemize}
\item[(a)] $M > M_s$ \quad $\theta > \theta_c$
\item[(b)] $M = M_s$ \quad $\theta = \theta_c$
\item[(c)] $M < M_s$ \quad $0 < \theta < \theta_c$
\end{itemize}
In the Langevin case from (2) we obtain

\[\dot{M} = -\hat{\kappa} \mu_0 [\mathcal{L}(M, \theta) - \tilde{H}] , \]

where

\[\mathcal{L}(M, \theta) = H_c(\theta) \mathbb{L}^{-1}(M/M_s) - \beta M, \]

\[H_c(\theta) = \frac{M_s \theta}{3C}, \quad \beta = \frac{\theta_c}{C} > 0 \]

\[\mathbb{L}(u) = \coth u - 1/u \quad \text{(Langevin function)} \]

Assuming \(\tilde{H}(t) = A \sin \omega t \), we obtain the closed system,

\[
\begin{aligned}
\dot{M} &= -\hat{\kappa} \mu_0 \left[H_c(\theta) \mathbb{L}^{-1}(M/M_s) - (\tilde{H} + \beta M) \right] \\
\dot{H} &= A \omega \cos \omega t .
\end{aligned}
\]
Numerical simulation of the Langevine model in the \(\tilde{H} - M \) plane:

HARD MATERIALS

\[
\begin{align*}
\text{Ferromagnetic responses under a cyclic process in } \tilde{H} \text{ at different temperatures: } \theta_1 > \theta_c \text{ on the left, } \theta_2 = \theta_* < \theta_c \text{ in the center, } \theta_3 < \theta_* \text{ on the right. Simulations (solid) and skeleton curves (dashed).}
\end{align*}
\]
Numerical simulation of the Langevine model in the H – M plane:

HARD MATERIALS

Ferromagnetic responses under a cyclic process in $H = H_{\text{ex}}$ at different temperatures: $\theta_1 > \theta_c$ on the left, $\theta_2 = \theta_* < \theta_c$ in the center, $\theta_3 < \theta_*$ on the right. Simulations (solid) and skeleton curves (dashed).
The bilinear case:

temperature-induced transition in the \(\tilde{H} - M \) plane

\[
\begin{align*}
\chi \gamma > \frac{1}{\alpha} & \quad \theta_* < \theta < \theta_c \\
\chi \gamma < \frac{1}{\gamma} & \quad 0 < \theta < \theta_*
\end{align*}
\]

Figure: Hard ferromagnetic materials: \(\gamma < 0 \). The graphs in the \((H, M)\)-plane (\(\chi \gamma \) is the skeleton slope and \(\theta^* = C|\gamma| \)).
In the bilinear case, the Lagrangian function reads (see Figg.5.1.a and 5.2.a)

\[\Phi_b(M, \tilde{H}, \theta) = \mu_0 I_{(-1,1)}(M/M_s) + \frac{\mu_0}{2\chi_{\beta}(\theta)} M^2 - \mu_0 M \tilde{H}. \]

and assuming \(M = M_s m \), from (2) we obtain

\[\dot{M} = -\kappa \mu_0 \left[\partial I_{(-1,1)} + \frac{M}{\chi_{\beta}(\theta)} - \tilde{H} \right], \]

where

\[I_{(-1,1)} = \text{Indicator function of } (-1,1) \]
\[\partial I_{(-1,1)} = \text{subdifferential of } I_{(-1,1)} \]
\[\chi_{\beta}(\theta) = \frac{C}{\theta - \theta_c}, \]
SMOOTHING of Φ_b

If we assume $M = M_s \Gamma(m)$, $\Gamma(m) = \frac{1}{2}(1 - \cos \pi m)$, then $l_{(-1,1)}$ can be removed from the potential,

$$\Phi_{b,\Gamma} = \frac{\mu_0}{2\chi_\beta(\theta)} M_s^2 \Gamma^2(m) - \mu_0 M_s \tilde{H} \Gamma(m).$$

Assuming $\tilde{H}(t) = A \sin \omega t$, from (2) we obtain the closed system,

$$\begin{cases}
\dot{M} = -\frac{\pi^2 \hat{\kappa} \mu_0}{4} (M_s^2 - M^2) \left(\frac{M}{\chi_\beta(\theta)} - \tilde{H} \right) \\
\dot{H} = A\omega \cos \omega t.
\end{cases}$$

whose solutions can be easily computed by numerical methods.
Numerical simulation of the bilinear model: $\theta > \theta_c$

Paramagnetic response under a cyclic process in the $H - M$ plane at $\theta > \theta_c$. Simulations (solid) and theoretical curves (dashed).
Numerical simulation of the bilinear model: $\theta < \theta_c$

(soft material)

Ferromagnetic response under a cyclic process in the $H - M$ plane at $0 < \theta < \theta_c$. Simulations (solid) and theoretical curves (dashed).
Numerical simulation of the bilinear model: $\theta < \theta_c$

(hard material)

Ferromagnetic response under a cyclic process in the $H - M$ plane at $0 < \theta < \theta_\ast < \theta_c$. Simulations (solid) and theoretical curves (dashed).
2nd order transitions with hysteresis

Conclusions

- Starting from some **Duhem’s models** accounting for hysteresis loops (bilinear, Coleman-Hodgdon), we construct the corresponding **G-L model** by way of the computation of Φ (Lagrangian function)

\[\Phi(M, H, \theta) = V(M, \theta) - \mu_0 HM \]

- $\Phi(M, H, \theta) = V(M, \theta) - \mu_0 HM$ depends on the **skeleton curve** of the original model.

- The original Duhem’s model is able to account for **minor loops**, the final G-L model is **not**.

- The original Duhem’s model is **rate-independent**, the final G-L model is **not**.

- The final G-L model is **almost rate-independent**, provided that κ is properly chosen according to the operating frequencies ω.

- The final G-L model may be **very easily coupled** with PDEs (mass, momentum and energy balances) in order to rule the evolution of all variables; the original Duhem’s model may **not**.